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Abstract
An infinite family of exactly solvable and integrable potentials on a plane is
introduced. It is shown that all already known rational potentials with the above
properties allowing separation of variables in polar coordinates are particular
cases of this family. The underlying algebraic structure of the new potentials
is revealed as well as its hidden algebra. We conjecture that all members of the
family are also superintegrable and demonstrate this for the first few cases. A
quasi-exactly-solvable and integrable generalization of the family is found.

PACS numbers: 03.65.Fd, 02.30.Ik, 11.30.Na

1. Introduction

Some quantum mechanical systems can be characterized by two differently defined global
properties. The first has been called exact solvability and it means that all energy levels can be
calculated algebraically and the corresponding wavefunctions can be obtained as polynomials
in the appropriate variables, multiplied by some overall gauge factor. The other property is that
of integrability, namely the existence of n integrals of motion that are well-defined quantum
mechanical operators, commuting with the Hamiltonian and amongst each other.

A more restrictive property than integrability is superintegrability: the existence of more
integrals of motion than degrees of freedom. A maximally superintegrable system has 2n − 1
integrals of motion, including the Hamiltonian. Only subsets of n of them can commute
amongst each other.

Any one-dimensional system is integrable and also maximally superintegrable by
definition. In this communication, we concentrate on the two-dimensional case where the
situation is quite different. A two-dimensional system is integrable if it allows two integrals
of motion and maximally superintegrable if it allows three. Some time ago, it was conjectured
that all maximally superintegrable systems for n = 2 are exactly solvable [1]. Here we will
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show that several exactly solvable systems are in fact maximally superintegrable. Though
they seem very different, they are particular cases of a parametric family of Hamiltonians.

Let us consider the following Hamiltonian in R2 written in polar coordinates:

Hk(r, ϕ;ω, α, β) = −∂2
r − 1

r
∂r − 1

r2
∂2
ϕ + ω2r2 +

αk2

r2 cos2 kϕ
+

βk2

r2 sin2 kϕ
, (1)

where α, β > − 1
4k2 , ω and k �= 0 are parameters. For k = 1, this system was introduced in

[2, 3] and has been called the Smorodinsky–Winternitz system [4]. For k = 2, the Hamiltonian
(1) corresponds to the so-called rational BC2 model [5, 6]. For k = 3, it describes the Wolfes
model [7] (it is the rational G2 model in the Hamiltonian reduction method nomenclature
[5, 6]); if α = 0, it reduces to the Calogero model [8]. The configuration space of (1) is given
by the sector π

2k
� ϕ � 0, r ∈ [0,∞) which is the Weyl chamber for BC2 if k = 2 and G2 if

k = 3, respectively.
There is an interesting feature of the Hamiltonian (1) connecting different values of k,

namely

H2�(r, ϕ;ω, 0, β) = H�(r, ϕ;ω, β, β), (2)

H2�(r, ϕ;ω, α, 0) = H�

(
r, ϕ − π

4�
;ω, α, α

)
. (3)

The Hamiltonian (1) to our knowledge includes all published superintegrable systems in
a Euclidean plane E2 that allow the separation of variables in polar coordinates.

2. Exact solvability

It is well known that the model (1) for k = 1, 2, 3 is exactly solvable (the energies and
eigenfunctions can be found explicitly). For α = 0 and k integer, the exact solvability of the
Hamiltonian (1) was mentioned in [9]. It can be immediately checked by a direct calculation
that the ground state of (1) is given by

	0 = r(a+b)k cosa kϕ sinb kϕ e− ωr2

2 , E0 = 2ω[(a + b)k + 1], (4)

where α = a(a − 1) and β = b(b − 1) . If we make a gauge rotation of the Hamiltonian (1),

hk = 	−1
0 (Hk − E0)	0, (5)

we obtain the operator

hk = −∂2
r +

(
2ωr − 2k(a + b) + 1

r

)
∂r − 1

r2
∂2
ϕ − 2k

r2
(−a tan kϕ + b cot kϕ)∂ϕ, (6)

for which the lowest eigenfunction is a constant with zero eigenvalue.
The original eigenfunctions 	(r, ϕ) of the Hamiltonian (1) are related to those of the

transformed Hamiltonian hk as follows: 	(r, ϕ) = 	0(r, ϕ)
(r, ϕ). Let us solve the
original problem (1) in a traditional way by a separation of variables in hk . Thus, we assume

(r, ϕ) = R(r)�(ϕ) and write

hk = hr +
1

r2
hϕ. (7)

The operator hϕ written in the new coordinate z = sin2kϕ reads as

hϕ = 4k2z(z − 1)∂2
z + 4k2

[
(a + b + 1)z − b − 1

2

]
∂z. (8)

2
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The eigenvalue problem hϕ� = �n�, where �n is the separation constant, has polynomial
eigenfunctions

�n(z) = P (a−1/2,b−1/2)
n (2z − 1), �n = 4k2n(n + a + b), n = 0, 1, 2, . . . , (9)

where P
(a−1/2,b−1/2)
n (2z − 1) is a Jacobi polynomial. Now the eigenvalue problem for the

operator

hk = −∂2
r +

(
2ωr − 2ak + 2bk + 1

r

)
∂r +

�n

r2
(10)

appears. Let us perform a further gauge rotation of hr :

h̃k = r−γ hkr
γ = −∂2

r +

(
2ωr − 2ak + 2bk + 2γ + 1

r

)
∂r +

�n − 2(a + b)kγ − γ 2

r2
+ 2ωγ.

(11)

We absorb the term 2ωγ in the energy and choose γ = 2kn so as to remove the 1/r2 term:

γ 2 + 2(a + b)kγ − �n = 0.

The resulting radial operator in the t = r2 variable

h̃r = −4t∂2
t + 4[ωt − k(2n + a + b) − 1]∂t (12)

has the eigenstates

RN(t) = L
(k(2n+a+b))
N (ωt), EN = 4ωN, (13)

where L
(k(2n+a+b))
N (ωt) is a Laguerre polynomial. Finally, the eigenstates of (1) are

	N,n = r2nkRN(r2)P (a−1/2,b−1/2)
n (2sin2kϕ − 1)	0,

EN,n = 2ω[2N + (2n + a + b)k + 1].
(14)

All formulae remain valid for any real k �= 0. In particular, both RN(r2) and P
(α,β)
n (z) remain

polynomials. The eigenvalues are linear in the quantum numbers N, n. For integer (and
rational) k there is a degeneracy of states, which is determined by the number of solutions of
the equation

N + kn = integer.

Varying k, we can change degeneracy leaving the spectra linear in the quantum numbers N, n.
If k in (1) takes integer values, we have a Lie-algebraic interpretation of the problem (1).

In order to reveal it, let us make the following change of variables:

t = r2, u = r2k sin2 kϕ. (15)

The resulting gauge-transformed Hamiltonian (1) in these coordinates takes an algebraic form:

hk = −4t∂2
t − 8ku∂2

tu − 4k2t k−1u∂2
u

+ 4[ωt − (a + b)k − 1]∂t + [4ωku − 2k2(2b + 1)tk−1]∂u. (16)

It coincides with already known expressions for the Hamiltonian for k = 1, 2, 3 in appropriate
variables (see [1, 6]). What is its underlying hidden algebra if any?

The Hamiltonian hk preserves the space of polynomials

P (s)
N = (tpuq |0 � (p + sq) � N ), N = 0, 1, 2, . . . , (17)

for s � k − 1 and any integer N . Hence, it has infinitely many finite-dimensional invariant
subspaces P(s)

N . These spaces can be ordered forming an infinite flag,

P(s)
0 ⊂ P(s)

1 ⊂ P(s)
2 · · ·P(s)

N · · · (18)

3
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for fixed s. We call this flag P(s). The space P(s)
N is a finite-dimensional irreducible

representation space of the infinite-dimensional finitely generated Lie algebra g(s) ⊃
gl(2, R)�Rs+1 ⊕Ts of monomials in (s +6)-generating operators. These generating operators
are [10] (see also [11, 12])

J 1 = ∂t ,

J 2
N = t∂t − N

3
, J 3

N = su∂u − N
3

,

J 4
N = t2∂t + stu∂u − N t,

Ri = t i∂u, i = 0, 1, . . . , s,

(19)

and

Ts = u∂s
t (20)

(see [6]). The generator J 3
N is the central generator of the gl(2, R)-algebra. The generators

(19) of the non-semisimple Lie algebra gl(2) � Rs+1 are vector fields on line bundles over an
s-Hirzebruch surface [12]. The meaning of the generator (20) for s > 1 is unclear.

For s = 1, the algebra g(1) coincides with the algebra sl(3). It has the space (17) for
s = 1 as an invariant subspace and acts irreducibly there. It is important to note that the
space P(s)

N is a finite-dimensional (reducible) representation space of the finite-dimensional
non-semisimple Lie algebra gl(2, R) � Rs+1 (see [6]):

P̃(s)
N ,p = 〈tn1un2 |0 � (n1 + sn2) � N and 0 � n2 � p〉. (21)

For fixed s and p, these spaces form the flag P̃(s)
p . Each such flag for s � k − 1 is preserved

by the Hamiltonian hk . This gives information about the structure of the eigenfunctions. In
particular, it implies the existence of a family of eigenfunctions which depend on the variable
t only.

It can be immediately checked that hk for fixed integer k preserves the flag P(s) for
s = k − 1, s = k or s > k assuming the hidden algebras g(k−1), g(k), g(s), respectively. It is
worth mentioning that the first case s = k − 1 supports the already known hidden algebras
of the trigonometric BC2 for k = 2 and G2 for k = 3 models, respectively, in contrast to the
second or third case. However, later on we will see that the case s = k − 1 is excluded (see
section 3).

The fact that s can take any values s � k − 1 reflects a degeneracy of eigenstates of
the original problem (1). For particular cases k = 2, 3, it was already mentioned in the
paper [6]. This degeneracy is removed by the algebraic form of the integrals of motion (see
below). Hence, for any integer k the algebraic Hamiltonian (16) can be rewritten in terms of
the generators (19) (without the operator J 4

N ) (see theorem 4.3 from [11]):

hk = −4J 2J 1 − 8J 3J 1 − 4kRk−1J
3

+ 4ωJ 2 − 4[(a + b)k − 1]J 1 + 4ωJ 3 − 2k2(2b + 1)Rk−1, (22)

where J i ≡ J i
0 .

3. Complete Integrability

It is obvious that

Xk(α, β) = −L2
3 +

αk2

cos2 kϕ
+

βk2

sin2 kϕ
, (23)

where L3 = ∂ϕ is the 2D angular momentum, is an integral of motion [2, 3]. Its existence is
directly related to the separation of variables in polar coordinates in the Schroedinger equation

4
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for (1). Therefore, the Hamiltonian (1) defines a completely integrable system for any real
k �= 0 which is also exactly solvable.

After a gauge rotation xk = 	−1
0 (Xk − ck)	0, this integral takes the algebraic form

xk = −4k2u(tk − u)∂2
u − 4k2

[(
b + 1

2

)
t k − (a + b + 1)u

]
∂u, (24)

where ck = k2(a + b)2 is the lowest eigenvalue of the integral Xk . It can be easily checked
that xk has infinitely many finite-dimensional invariant subspaces: it preserves the flag P(s)

for any s � k. The integral xk can be rewritten in the generators (19) as

xk = −4kJ 3Rk + 4J 3J 3 − 4k2
(
b + 1

2

)
Rk + 4k(a + b)J 3. (25)

The presence of the generator Rk excludes the algebra (19) and (20) for s = k − 1 as hidden
algebra (see the above discussion). It indicates that the hidden algebra of (23) is g(s) for s � k.
Hence, the hidden algebra of the quantum system (1) with the integral (23) is g(s) with s � k.

4. Superintegrability

The next question is the existence of an additional integral of motion Y2k (presumably of order
2k) for all integer values of k. If such an integral exists, then the system (1) is (maximally)
superintegrable. For k = 1, the Smorodinsky–Winternitz system, this integral Y2 was found
long ago (see [1, 2, 3]). It turned out to be a second-order differential operator. For k = 2
and ω = 0, which is the case of the so-called singular rational BC2 model, the integral Y4 was
found by Olshanetsky–Perelomov in the representation theory approach [5]. This integral is a
fourth-order differential operator. For k = 3 and ω = α = 0 (the so-called singular Calogero
model), the corresponding integral is a third-order differential operator [5]. For α �= 0 (the
so-called singular Wolfes model), it was mentioned in [5] that it has to be of the sixth order. For
the general Wolfes model ω �= 0 (the rational G2 model in the Hamiltonian reduction method
nomenclature), Quesne [13] found this integral explicitly in the Dunkl operator formalism.
The integral Y6 is a sixth-order differential operator.

If the integral Y2k exists, it should have the same eigenfunctions as Hk . Hence by a gauge
rotation and change of variables (15), we can obtain an operator y2k:

y2k = 	−1
0 (Y2k − C2k)	0|t,u, (26)

such that y2k is a differential operator of some order in t and u with polynomial coefficients and
C2k is the lowest eigenvalue of the integral Y2k . The described algebraic form y2k would be a
consequence of the fact that both hk (16) and y2k should preserve the same flag of polynomials.

For the case k = 1, the integral Y2 was found in [3]. In Cartesian coordinates, Y2 is of
second order and it can be written as

Y2 = ∂2
x − ω2x2 − α

x2
. (27)

The algebraic form of the integral was calculated in [1]. In the coordinates (15), the
integral (27) is

y2

4
= (t − u)∂2

t +

[
ω(u − t) + a +

1

2

]
∂t , (28)

where the constant C2 = −ω(2a + 1). The integral y2 (28) contains the term u∂t which is
present in the algebra g(1) (see (20)). It indicates unambiguously that for the case k = 1, the
hidden algebra should correspond to s = 1. Hence, there is no ambiguity for the k = 1 case.
The hidden algebra is fixed and it is g(1) ≡ sl(3) which is generated by gl(2)�R2⊕T1 ⊂ gl(3).
The Lie algebraic form of y2 is as follows:

y2

4
= J 2J 1 − T1J

1 + ωT1 − ωJ 2 +

(
a +

1

2

)
J 1. (29)

We stress that the generator T1 (see (20)) appears explicitly in (29).

5
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For the case k = 2 (the rational BC2 model), we find the higher integral Y4 explicitly:

Y4 = (
∂2
x − ω2x2 − ∂2

y + ω2y2
)2

+

{
∂2
x ,

(x2 − y2)β

x2y2
− 4(x2 + y2)α

(x2 − y2)2

}

+

{
∂x∂y,− 16xyα

(x2 − y2)2

}
+

{
∂2
y ,− (x2 − y2)β

x2y2
− 4(x2 + y2)α

(x2 − y2)2

}

+
16α2

(x2 − y2)2
+

(x2 − y2)2β2

x4y4
+

8αβ

x2y2
− 2(x4 + y4)βω2

x2y2
, (30)

where {, } denotes an anticommutator. Making the gauge rotation 	−1
0 (Y4 − C4)	0 and the

change of variables (15), we arrive at the algebraic form of the integral

y4

16
= (t2 − u)∂4

t − 8(t2 − u)u∂2
t ∂2

u + 16(t2 − u)u2∂4
u − 2[ωt2 − (2a + 1)t − ωu]∂3

t

− 4[(2b + 1)t2 − 2(a + b + 1)u]∂2
t ∂u + 8u[ωt2 − (2a + 1)t − ωu]∂t∂

2
u

+ 16u[(2b + 3)t2 − 2(a + b + 2)u]∂3
u

+ 16[ω2t2 − 3(2a + 1)ωt − ω2u + (2a + 1)(2a + 2b + 1)]∂2
t

− 4[(2b + 1)ωt2 − (2a + 1)(2b + 1)t − 2(a + b + 1)ωu]∂t∂u

+ 4[(2b + 1)(2b + 3)t2 + (2a + 1)ωtu − 2(2a2 + 6ab + 2b2 + 8a + 7b + 5)u]∂2
u

+ ω(2a + 1)(ωt − 2a − 2b − 1)∂t + 2(2a + 1)(2b + 1)(ωt − 2a − 2b − 1)∂u,

(31)

where C4 = 4ω2[2a(a + 1) − b(b − 1)]. The two terms t2∂u and u∂2
t in y4 imply s = 2.

Hence, the hidden algebra for k = 2 is g(2). The Lie-algebraic form of y4 is as follows:

y4

16
= J 2J 2J 1J 1 − J 1J 1T2 + 2J 1J 1J 3J 3 + 4J 3J 3R2R0 − 4J 2J 2J 3R0 − 2J 3J 3J 3R0

− 2ωJ 2J 2J 1 − 2ωJ 3J 3J 1 + 2(2a + 1)J 2J 1J 1 − 4(2b + 1)J 2J 2R0

+ 4ωJ 3R2J
1 − 4(2a + 1)J 3R1J

1 + 8(2b + 3)J 3R1R1 − 8(a + b + 2)J 3J 3R0

+ (2a + 1)(2a + 2b + 1)J 1J 1 − 3ω(2a + 1)J 2J 1 + ω2J 2J 2 + 4ω(a + b + 1)J 3J 1

− 4ω(2b + 1)R2J
1 + 64(2a + 1)(2b + 1)J 2R0 + 2ω(2a + 1)J 3R1

− 4(2a2 + 6ab + 2b2 + 8a + 7b + 5)J 3R0

+ 4(2b + 1)(2b + 3)R2R0 + 2ωT2J
1 + 8(a + b + 1)T2R0

− (2a + 1)(2a + 2b + 1)J 1 + ω2(2a + 1)J 2

+ 2ω(2a + 1)(2b + 1)R1 − 2(2a + 1)(2b + 1)(2a + 2b + 1)R0 − ω2T2. (32)

The generator T2 (see (20)) again appears explicitly in (32).
For the case k = 3 (the rational G2 model), we find the higher integral Y6 explicitly by a

straightforward (brute force) calculation. It is of sixth order (see [14, appendix A]). Its lowest
eigenvalue is

C6 = 4ω3(3a + 3b + 1)(5a2 + 36ab − 27b2 + a + 45b + 4). (33)

Making the gauge rotation 	−1
0 (Y6 − C6)	0 and the change of variables (15), we arrive at

the algebraic form of the integral y6 (see [14, appendix A]). The two elements R3 = t3∂u and
T3 = u∂3

t are present in y6 and unambiguously point to s = 3. Hence, the hidden algebra of
the model at k = 3 is g(3).

For the case k = 4, we again find the higher integral Y8 explicitly by a brute-force
calculation as an eight-order differential operator (see [14, appendix B]). Making the gauge

6
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rotation 	−1
0 (Y8 − C8)	0 and the change of variables with

C8 = 4ω4[3200a4 + 512a3(31b + 10) + 16a2(206b + 159)(2b − 3)

+ 16a(310b3 − 187b2 − 443b + 105) + 1133b4 + 150b3 − 176b2 + 493b + 4], (34)

we arrive at the algebraic form of the integral, y8 (see [14, appendix B]). The elements
R4 = t4∂u and T4 = u∂4

t in y8 imply s = 4. The hidden algebra of the model for k = 4 is g(4)

which contains the generator T4.
We were unable to prove the existence of the higher order integrals Y2k for integer k with

k > 4 due to the fast growing complexity of the brute-force calculations. However, we feel
justified in formulating the following conjecture.

Conjecture. An integral of motion Y2k of order 2k exists for the Hamiltonian (1) for all
positive integer values of k. In Cartesian coordinates, Y2k is a differential operator of order
2k with rational coefficients. The gauge transformation (26) together with the change of
variables (15) transforms Y2k into the algebraic operator y2k that has polynomial coefficients.
The integral y2k is an element of order 2k in the enveloping algebra of the hidden algebra
g(k). In particular, y2k contains the terms 4k[(J 1)k − Tk](J 1)k which fix k = s in the hidden
algebra (19) and (20). In the limit ω = α = 0, the operator Y2k(0, 0, β) is reduced to the
square of an operator of order k.

Our conjecture is based on the fact that the gauge-rotated Hamiltonian hk (5) preserves
the flag of polynomials (17) as do all the elements of the underlying hidden algebra g(k) (19)
and (20). All aspects of this conjecture have been confirmed for k = 1, 2, 3 and 4 for general
ω, α, β as well as for k = 1, . . . , 6, 8 for ω = α = 0, β �= 0. The consideration of k > 4
for general ω, α, β requires a different approach other than the brute-force one. A proof of
the conjecture could be based on a direct analysis of the commutation relations of the hidden
algebra (19) and (20).

Any operator preserving this flag must lie in the enveloping algebra of g(k) for given k.
The gauge-rotated integrals y2k must hence have an algebraic form for all k, as exemplified by
k = 1, 2, 3 and 4.

The form of the integrals Y2k is not unique since we can modify it by adding polynomials
in the Hamiltonian (1) and integral Xk (23). Our convention is to require that the highest order
terms in Y2k should have the form

[Re(∂1 + i∂2)
k]2. (35)

The lower order terms in Y2k could be further simplified by linear combinations with
lower order polynomials in (1) and (23). We also require that Y2k be a Hermitian operator, and
this implies that it will contain only even powers of the derivatives

(
∂m

1 ∂n
2 ,m+n = 0, 2, 4, . . . ,

2k
)
.

5. A quasi-exactly-solvable extension

Some years ago, a new class of the Schroedinger equations was discovered for which a
finite number of eigenstates can be calculated by purely algebraic means. They were called
quasi-exactly-solvable [15, 16]. These problems occupy an intermediate place between exactly
solvable problems and non-solvable ones. A large body of articles dedicated to these problems
was published during the last 20 years. The articles have ranged from various branches of
physics to pure mathematics.

7
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Surprisingly, there exists a quasi-exactly-solvable generalization of the Hamiltonian (1):

H
(qes)
k,N (r, ϕ;ω, α, β) = −∂2

r − 1

r
∂r − 1

r2
∂2
ϕ + λ2r6 + 2λωr4 + [ω2 − 2λ(2N + 2 + k(a + b))]r2

+
αk2

r2 cos2 kϕ
+

βk2

r2 sin2 kϕ
, (36)

(cf [15–17]), where dimP(k)
N ≈ N 2

2k
+ 1 eigenstates can be found explicitly (algebraically).

These algebraic eigenfunctions have the form of a polynomials p(t, u) from the space P(k)
N

(17) multiplied by a factor 	
(qes)
0 :

	
(qes)
0 = r(a+b)k cosa kϕ sinb kϕ e− ωr2

2 − λr4

4 , (37)

namely

	
(qes)
alg = p(t, u)	

(qes)
0 . (38)

Hence, the number of algebraic states is equal to the dimension of the space P(k)
N .

The gauge-rotated Hamiltonian (36),

h
(qes)
k,N = −(

	
(qes)
0

)−1(
H

(qes)
k,N − E0

)
	

(qes)
0 ,

where E0 is some parameter, in the variables (15) has the algebraic form

h
(qes)
k,N = 4t∂2

t + 8ku∂2
tu + 4k2t k−1u∂2

u + 4[λt2 − ωt + (a + b)k + 1]∂t

+ [4λktu − 4ωku + 2k2(2b + 1)tk−1]∂u − 4λN t. (39)

It is easy to check that (39) preserves the space P(k)
N (17). Hence, it can be rewritten in

generators of the algebra (19), gl(2) � Rk+1 [11] and indeed we have

h
(qes)
k,N

/
4 = (

J 2
N + 2J 3

N
)
J 1 + kJ 3

NRk−1 + [(a + b)k + 1 + N ]J 1

−ω(J 2
N + J 3

N ) − λJ 4
N +

k

6
[2N + 3k(2b + 1)]Rk−1. (40)

Evidently, the QES problem is completely integrable: Xk (see (23)) commutes with (36).
The algebraic form of Xk after a gauge rotation with (37) in variables (t, u) remains the same
(24). The Lie-algebraic form (25) is slightly modified:

xk = −4kJ 3
NRk + 4J 3

NJ 3
N − 4k

[
k

(
b +

1

2

)
+
N
3

]
Rk + 4

[
k(a + b) +

2N
3

]
J 3
N +

4N 2

9
. (41)

The question of the existence of a second integral and thus of the superintegrability of the
Hamiltonian (36) remains open.

6. Conclusions

We have restricted this communication to the case of a Schroedinger equation in a two-
dimensional Euclidean space E2 and to the Hamiltonians allowing separation of variables in
polar coordinates. The feature underlying the exact solvability, the complete integrability
and the conjecture of maximal superintegrability is the existence of a hidden Lie algebra of
differential operators. All elements of the hidden algebra and hence also of its enveloping
algebra preserve an infinite flag of finite-dimensional subspaces of the space of wavefunctions.

The Hamiltonians and the integrals of motion of the entire family (1) considered in this
paper are also elements of the enveloping algebra of g(k). The family contains all currently
known superintegrable systems in E2 that are separable in polar coordinates. It would be

8
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important to clarify whether the Hamiltonian (1) can be obtained by a Hamiltonian reduction
procedure. This is the case for k = 1, 2, 3.

The first problem that remains open is to prove our conjecture, namely that the Hamiltonian
(1) is superintegrable for all integer values of k. Another important question is that of the
classical limit of the system with Hamiltonian (1). For k = 1, 2 and 3, these systems are
all superintegrable. Chanu et al [18] have considered the classical case for ω = α = 0 and
k = 2n + 1 and have conjectured that it is superintegrable for all integer n. We think that the
classical limit of (1) is actually superintegrable for all values of ω, α and k. We plan to verify
this conjecture directly by calculating the trajectories for the classical systems. If the systems
are (maximally) superintegrable, then all bounded trajectories must be closed and the motion
must be periodic [19].

The direct construction of the higher order integrals Y2k for k � 5 seems intractable.
More promising approaches would either involve an efficient use of the hidden algebra g(k) or
possibly the use of Dunkl operators [20] as suggested for the Calogero model in [21] and for
the Wolfes model in [13].

The close relation between exact solvability and maximal superintegrability has also
been exemplified in n dimensions [22–24]. A very complete review of quantum completely
integrable systems in n dimensions was recently given by Oshima [25]. For some cases, these
systems are known to be exactly solvable. It would be of great interest to investigate their
possible (maximal) superintegrability.
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